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Abstract. We study the collective excitation spectrum of ad = 3 site-disordered Anderson–
Hubbard model at half-filling, via a random-phase approximation (RPA) about broken-symmetry,
inhomogeneous unrestricted Hartree–Fock (UHF) ground states. We focus in particular on the
density and character of low-frequency collective excitations in the transverse spin channel. In
the absence of disorder, these are found to be spin-wave-like for all but very weak interaction
strengths, extending down to zero frequency and separated from a Stoner-like band, to which
there is a gap. With disorder present, a prominent spin-wave-like band is found to persist
over a wide region of the disorder–interaction phase plane in which the mean-field ground
state is a disordered antiferromagnet, despite the closure of the UHF single-particle gap. Site
resolution of the RPA excitations leads to a microscopic rationalization of the evolution of the
spectrum with disorder and interaction strength, and enables the observed localization properties
to be interpreted in terms of the fraction of strong local moments and their site-differential
distribution.

1. Introduction

Central to the understanding of any system with long-ranged order is a description of its
collective excitations. If the Hamiltonian has a continuous symmetry which is broken in the
ground state, their spectrum is gapless (as implied by the existence of Goldstone modes)
and they dominate low-temperature thermodynamic properties.

One of the most familiar examples of such a system is the Heisenberg model, whose
collective excitations are pure spin waves. WithS = 1

2, antiferromagnetic (AF) nearest-
neighbour interactions and on a bipartite lattice, the ground state of the Hamiltonian has
long-ranged magnetic order in three dimensionsd [1]. While no exact solution exists for
d > 1, a successful and longstanding approach to the ground state and collective excitations
of the model is given by linear spin-wave theory (LSW) [2], in which particle–hole pairs
created out of the Ńeel mean-field ground state are treated as bosons. The theory becomes
exact in the limitd → ∞, and 1/d corrections can be systematically incorporated [3, 4];
but even ford = 2, LSW estimates for the sublattice magnetization, spin-wave velocity and
ground-state energy are in good agreement with quantum Monte Carlo calculations (QMC)
(see e.g. reference [3] for a comprehensive review).

It is well known that the AF Heisenberg model represents the strong-coupling limit
of the half-filled Hubbard model [5]. At finite interaction strengthsU , the mean-field
ground state remains the Néel state (albeit with self-consistently determined local moment
magnitudes) and gives a qualitatively sound description of the true ground state ford > 2.
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The collective excitation spectrum is however considerably more complex than that of the
Heisenberg model, since its low-frequency spin-wave excitations are mixed with incoherent,
Stoner-like processes, leading to O(N2) particle–hole excitations in contrast to theN spin
waves which alone survive in the strong-coupling limit.

The generalization of LSW to finite interaction strengths is given by the random-
phase approximation (RPA) about the fully unrestricted Hartree–Fock (UHF) saddle point.
Although naively thought of as a weak-coupling theory, it reduces precisely to LSW in the
strong-coupling limit, an observation which has led a number of authors to conclude it to
be a sound way of probing the collective excitations of the Hubbard model over a wide
range of interaction strengths: for example, such an approach has been successfully used
to investigate the transverse spin excitation spectrum of the Hubbard model both ford = 1
[6] and for d = 2 (see e.g. references [7–9]).

In the present work we consider initially the collective excitation spectrum of the
Hubbard model on a simple cubic lattice. This is shown to possess two distinct bands
for all interaction strengthsU : a low-energy spin-wave-like band corresponding primarily
to orientational fluctuations of the local moments, extending down to zero frequency and
containing two Goldstone modes; and an upper band of Stoner-like excitations, to which
there is a gap due to Fermi-surface nesting in the corresponding single-particle spectrum [10].
The latter involve a significant degree of charge-transfer character (site double occupancy)
and are projected out in the large-U limit, leaving solely the low-frequency excitations,
which become the pure spin waves of the Heisenberg model. It is found that, despite
mixing between the two bands at finiteU , the low-frequency excitations retain a strong
degree of spin-wave character down to weak interaction strengths.

A problem about which very little is known, even at a qualitative level, is the effect
of disorder on the collective excitation spectrum. In a disordered system, the collective
excitations are governed by the interplay of a number of complex processes, including
strong correlations of particle–hole pairs, Anderson localization of the underlying single-
particle states, and the non-trivial statistics associated with the distributions of local charges
and magnetic moments arising from inhomogeneity in the site environments.

Even at the mean-field level of UHF, the combined effects of disorder and electron
interactions in leading to strongly inhomogeneous ground states yield rich behaviour, as
shown by a recent study of the zero-temperature UHF phase diagram of a site-disordered
Anderson–Hubbard model [11] (AHM). Further, at RPA level, these ground states in turn
give rise to strongly inhomogeneous magnetic response properties [12, 13]. In particular,
disorder is found to lead to a significant enhancement in local static susceptibilities over
those in the pure system, this enhancement being strongly site differential.

The behaviour of static and dynamic susceptibilities in both the spin and charge channels
ultimately reflects the character and distribution of collective excitations about the ground
state. The observed site-differential enhancements mentioned above naturally raise questions
both of how disorder affects the excitation spectra of the model and of the spatial distribution
and localization characteristics of the excitations. In addition, the stability of the long-ranged
order present in the mean-field ground state towards zero-point spin fluctuations, and the
low-temperature properties of the model, are also governed by the RPA excitations.

We here investigate the RPA spectrum of ad = 3 Anderson–Hubbard model with
Gaussian site disorder, throughout the disorder–interaction phase plane. In section 2, we
discuss generic properties of the model and describe the procedure for calculating and
characterizing the collective excitation spectrum at RPA level. After a brief discussion of
the pure Hubbard model in section 3, we focus in section 4 on the AHM, concentrating on
the distribution, character and localization properties of the low-frequency excitations, with
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particular emphasis on the existence or otherwise of a spin-wave-like band in the transverse
excitation spectrum at finite disorder. We conclude in section 5 with a discussion of the
extent to which a recently developed mapping of the excitations of the Hubbard model
[14, 15] onto those of an effective spin model can be applied to the disordered system.

2. Collective excitation spectrum at the RPA level

The Hamiltonian we consider is given by

H =
∑
i,σ

εiniσ − t
∑
〈ij〉,σ

c
†
iσ cjσ + 1

2U
∑
i,σ

niσ ni−σ (2.1)

where t is the hopping matrix element,U is the (repulsive) on-site Coulomb interaction
and the〈ij〉 sum is over nearest-neighbour sites on ad = 3 simple cubic lattice. The site
energies{εi} are drawn randomly from a common Gaussian distributiong(ε) of variance
12 which, together with equation (2.1), specifies the Anderson–Hubbard model considered
here; and we focus exclusively on half-filling. Making a spin-rotationally invariant UHF
approximation to the interaction term in equation (2.1) allows the Hamiltonian to be
expressed asH = H0+H1 with

H0 =
∑
i,σ

εiniσ − t
∑
〈ij〉,σ

c
†
iσ cjσ + U

∑
i

{ 12n̄ini − 2S̄i · Si} (2.2)

whereSi is a spin-12 operator and the overbar denotes an expectation over the UHF ground
state. The zero-temperature phase diagram ofH0 in the(1/t, U/t) plane has been discussed
extensively in reference [11]; aspects of this study necessary for the present work will be
summarized briefly in section 4.1. Here we note that, while a rich variety of phases arise,
all mean-field magnetic ground states are found to be Ising-like (i.e. fully collinear local
moments, withS̄ix = 0= S̄iy for all sitesi), with S tot

z =
∑

i S̄iz = 0. Collective excitations
about these ground states, obtained via the RPA, then decouple into two sets [12]: for
frequenciesω > 0 there existN2/2 spin excitations transverse to the local momentz-
axis, andN2/2 longitudinal spin and charge excitations. In the non-disordered (1/t = 0)
Hubbard model there is a gap to longitudinal spin excitations for allU/t [12], reflecting the
presence of a gap in the single-particle density of states (DoS). By contrast the transverse
excitation spectrum is gapless (as reflected by the presence of Goldstone modes). With
disorder present, the dominant low-energy collective excitations are again found in the
transverse spin channel. We thus focus here on the transverse spin spectrum, since it
is these excitations which govern measured susceptibilities (the existence of a spin-flop
transition implying that only transverse excitations are in practice probed [13]), and which
are dominant in determining low-temperature thermodynamic properties.

2.1. Determination of the transverse excitation spectrum

The equations of motion for the RPA particle–hole excitations are straightforwardly derived
(see e.g. reference [16]). However, solution of these equations requires diagonalization of a
2N2× 2N2 non-Hermitian matrix, a procedure limited to impractically small system sizes.
An alternative—and viable—procedure is to exploit the fact that, because the interaction
term H1 contains only on-site terms, expressions for the RPA dynamic susceptibilities
(derived either diagrammatically or via linear response theory [12]) involve only matrices
of orderN . Specifically, the transverse spin susceptibility

χ−+ij (ω) = i
∫

dt eiωt 〈0|T {S−i (t)S+j }|0〉RPA (2.3)
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is given by

χ−+(ω) = 0χ−+(ω)
[
1− U 0χ−+(ω)

]−1
(2.4)

where theN × N matrix 0χ−+(ω) is the corresponding UHF transverse susceptibility
obtained by replacing|0〉RPA by |0〉UHF in equation (2.3). This is in turn given explicitly by

0χ−+ij (ω) =
∑

α>F>β

{
aiα↑ajα↑aiβ↓ajβ↓

Eα↑ − Eβ↓ − ω − iη
+ aiα↓ajα↓aiβ↑ajβ↑
Eα↓ − Eβ↑ + ω − iη

}
. (2.5)

HereF is the Fermi level,η = 0+ and the{Eασ } are the UHF single-particle energies,
with eigenvectors|9ασ 〉 =

∑
i aiασ |φiσ 〉 expanded in a site basis (and which are pure spin

orbitals for Ising-like UHF solutions [11]). We add in passing that the Fermi energy is
pinned atEF = 1

2U for all disorder strengths1 > 0, since the familiar particle–hole
symmetry characteristic of the non-disordered limit is preserved for all1 > 0 with the
symmetric Gaussiang(ε) [11].

Equation (2.5) is just the Lehmann representation for the retarded polarization propagator
appropriate to the UHF ground state, with poles at the Stoner excitation energies. When
ω does not coincide with a pole, this real symmetric matrix is diagonalized by an
orthogonal matrixV(ω) with eigenvalues{λγ (ω)}. Most importantly, as is evident from
equation (2.4), this transformation also diagonalizesχ−+(ω) with corresponding eigenvalues
λγ (ω)/[1− Uλγ (ω)], namely

χ−+ij (ω) =
∑
γ

Viγ
λγ (ω)

1− Uλγ (ω)Vjγ . (2.6)

RPA transverse collective excitations correspond to theω-poles ofχ−+(ω), which thus
occur at 1− Uλγ (ω) = 0, i.e. whenever an eigenvalue of0χ−+(ω) crosses 1/U . Further,
sinceχ+−ij (ω) = χ−+ji (−ω), a knowledge of the (positive and negative) poles ofχ−+(ω)
alone is sufficient to determine the full transverse spin excitation spectrum.

Two final points concerning the polesχ−+(ω) should be made before proceeding. First,
the broken symmetry of any magnetic UHF state implies the presence of a zero-frequency
Goldstone mode in bothχ−+ andχ+−, ensuring that the transverse excitation spectrum
is gapless. Second, theω-poles occur correctly on the real axis only if the UHF ground
state is fully stable against particle–hole excitations (see e.g. reference [17]). An eigenstate
of H0 which is not a true minimum on the UHF total energy surface leads to imaginary-ω

excitations which carry the system away from the saddle point, rendering it unstable. In this
regard, and even when the mean-fieldsolutionsare Ising-like, use of a fully unrestricted and
spin-rotationally invariant Hartree–Fock approximation is an essential prerequisite, since it
ensures that the mean-field states are minima.

In studying collective excitations at RPA level, a pole search onχ−+(ω) (equations
(2.4) and (2.5)) is powerful, since it allows study of much larger system sizes than direct
solution of the RPA equations. We now outline this procedure. From equation (2.5),
0χ−+(ω) itself has poles at the UHF excitation energies but, in the intervals between the
poles, the eigenvalues{λγ (ω)} of 0χ−+(ω) are continuous functions ofω. For a given
disorder realization, we thus determine the excitation spectrum as follows.

(i) Solution of the UHF problem yields the UHF excitation energies and hence the
intervals over which the eigenvaluesλγ (ω) are finite.

(ii) Diagonalization of0χ−+(ω) for ω at the beginning and the end of each interval
yields the number of eigenvalues which have crossed 1/U—and hence the number of RPA
poles—in each interval.

(iii) Finer resolution may then be obtained using, for example, a bisection technique.
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2.2. Character of the transverse excitations

Important information concerning the character of a given excitation of frequencyωp can
be obtained from the eigenvector coefficients{Viγ (ωp)}.

In the strong-coupling limitU/t →∞, the resultant AF Heisenberg model containsN
transverse particle–hole excitations, corresponding to linear combinations of solely on-site
spin flips. These are just the familiar pure spin waves. At finiteU/t , off-site spin-flip
excitations also contribute to the transverse spectrum, such that while there is spin–charge
separation (in the sense that the transverse spin and longitudinal/charge channels decouple
[12]), the transverse excitations themselves possess some charge-transfer character. It is
particularly instructive to evaluate the on-site spin-flip (or spin-wave) contribution to a
given excitation, as is now considered.

The Lehmann representation for the diagonal elements of the RPA susceptibility is given
generally by

χ−+ii (ω) =
∑
n

|〈0|S−i |n〉|2
En0− ω − iη

+ |〈0|S
+
i |n〉|2

En0+ ω − iη
(2.7)

where|0〉 and|n〉 are RPA ground and excited states andEn0 are the RPA excitation energies.
From equation (2.6),χ−+ii (ω) is expressible in terms of the eigenvalues and eigenvectors of
0χ−+(ω):

χ−+ii (ω) =
∑
α

V 2
iα(ω)

λα(ω)

1− Uλα(ω) . (2.8)

To compare equations (2.7) and (2.8), we analytically continue equation (2.8) by making
the replacementλα(ω)→ λα(ω + is), wheres is an infinitesimal. Consider any particular
pole,ωp, of equation (2.8), such thatλγ (ωp) = 1/U . For frequenciesω ' ωp, χ−+ii (ω) is
dominated by theα = γ term and is given to leading order by

χ−+ii (ω ' ωp) =
V 2
iγ (ωp)

U2(∂λγ /∂ω)ωp (ωp − ω − is)
. (2.9)

Comparison of equations (2.9) and (2.7) implies

sgn

(
∂λγ

∂ω

)
ωp

= sgn(ωp) (2.10a)

and

sgn(s) = sgn(ωp) (2.10b)

(in order that the poles ofχ−+(ω) occur in the correct half-plane), together with the central
result that, for the given pole,

|〈0|Sρi |n〉|2 =
1

U2|∂λγ /∂ω|ωp
V 2
iγ (ωp) (2.11)

whereρ = −sgn(ωp). Further, since the eigenvector coefficients{Viγ (ω)} are by construct
normalized, the sum rule∑

i

|〈0|Sρi |n〉|2 =
1

U2|∂λγ /∂ω|ωp
(2.12)

follows. That this sum is not unity simply reflects the fact that, at finiteU/t , RPA transverse
spin excitations have finite weight outside the on-site spin-flip subspace, i.e. matrix elements
of the form 〈0|c†i↓cj↑|n〉 with i 6= j are non-zero; for example, it may be shown that the
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general RPA normalization expressed in a site basis implies that
∑

ij |〈0|c†i↓cj↑|n〉|2 = 1
for RPA excitations corresponding to positive-ω poles. Only in the strong-coupling limit
U/t → ∞ are these off-site excitations effectively projected out of the transverse spin
spectrum.

The interpretation of the eigenvectors{Vγ (ω)} is therefore clear: from equations (2.11)
and (2.12) the set of coefficients{Viγ (ωp)} corresponding to a particularλγ (ωp) = 1/U
describe the spatial distribution of the on-site spin-flip component of the collective excitation,
while the prefactor�(ωp) = 1/(U2|∂λγ /∂ω|ωp ) gives the weight of the RPA excitation in
the subspace of on-site spin flips. Excitations with�(ωp) ' 1 are predominantly spin
waves, while those with�(ωp) � 1 have significant off-site ‘charge-transfer’ character.
(Note that, to generalize to a disordered system, we use the term ‘spin wave’ to denote any
excitation with� ' 1, regardless of itsq-resolution.)

The above interpretation may also be exploited to define an inverse participation ratio
(IPR) for the collective excitations, in analogy to the familiar IPR employed in the study
of localization of single-particle states [18], via

L(ωp) =
∑
i

V 4
iγ (ωp). (2.13)

Using equation (2.12), this may be expressed as

L(ωp) =
∑
i

|〈0|Sρi |n〉|4
/(∑

i

|〈0|Sρi |n〉|2
)2

ρ = −sgn(ωp). (2.14)

L(ωp) is on the order of the inverse of the number of sites overlapped by the excitation
at ωp: for an excitation receiving uniform contributions fromm sites,L(ω) ∼ 1/m. In
the thermodynamic limit,L(ω) is thus zero for a delocalized excitation and non-zero for a
localized excitation. For a finite-sized systemL > 0 necessarily, requiring the estimation
of a threshold IPR, appropriate to a given system size. While for the single-particle
excitations of the (non-interacting) Anderson model, such a threshold IPR can be addressed
via finite-size scaling [19], we have no information on theN -scaling ofL(ω) in the present
system. In section 4, however, we argue that a qualitative understanding of the localization
characteristics of transverse spin excitations may nonetheless be obtained.

3. Excitation spectrum of the pure Hubbard model

Before discussing the effects of disorder on the transverse excitation spectrum of the
Anderson–Hubbard model, we first consider briefly the important non-disordered limit. In
this case, for allU/t > 0, the UHF single-particle spectrumD(E) = 1

2

∑
ασ δ(E−Eασ ) has

a band gap of magnitudeU |µ|, with |µ| the self-consistent UHF local moment magnitude,
and in which lies the Fermi levelEF = 1

2U [10]. Consequently, the pure UHF particle–
hole excitation spectrum consists of a single Stoner band beginning atω = U |µ|, with
a maximum atω ∼ U . The full RPA spectrum of collective transverse spin excitations
consists, by contrast, of two distinct components (we considerω > 0 throughout, since the
spectrum is symmetric inω). First, there is a low-frequency band containing preciselyN

excitations of predominantly spin-wave character (discussed below), and extending down to
ω = 0 as implied by the presence of the Goldstone modes for allU/t > 0. Second, there
is a high-frequency band containing(N/2)(N − 2) Stoner-like excitations, which closely
resembles the corresponding pure UHF transverse spin spectrum: it begins atω = U |µ|—
the gap in the UHF single-particle spectrum—and has maximum spectral density forω ∼ U .
This Stoner-like band is effectively eliminated asU → ∞. For all U/t > 0, however, it
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may be shown to be separated from the top of the low-frequency band by a spectral gap,
i.e. there is a persistent separation of scales between the low-energy spin-wave-like band and
higher-energy Stoner-like excitations. For this reason we focus exclusively on the low-ω

component of the spectrum.

Figure 1. Density of low-frequency RPA excitationsNT (ω) for the pure Hubbard model with
U/t = 20 (solid line), compared to the linear spin-wave spectrum of the pure AF Heisenberg
model with nearest-neighbourJ = 4t2/U (dashed line).

The prescription of section 2, reformulated in a two-sublattice basis [7] appropriate to
the half-filled, non-disordered model, allows the RPA spectrum to be determined; in practice
we find that a lattice of 323 q-points (corresponding toN = 32 768) is required to give a
sufficiently dense spectrum. Figure 1 shows the resultant density of the lowestN transverse
spin excitations, given by

NT (ω) = N−1
∑

ωp6ωmax

δ(ω − ωp) (3.1)

whereωmax is the frequency of theN th excitation, for large couplingU/t = 20. Also shown
is the corresponding spectrum for the AF Heisenberg model with solely nearest-neighbour
(NN) J = 4t2/U , given byNLSW

T (ω) = N−1∑
q δ(ω − ωq) with [2]

ωq = ±3J
√

1− γ 2
q (3.2)

whereγq = 1
3

∑3
α=1 cos(qαa) anda is the lattice constant. The spectrum of low-frequency

transverse spin excitations of the Hubbard model thus closely resembles that of the NN
Heisenberg model at largeU/t —as expected, since asU/t →∞ the former maps exactly
onto the latter— although as seen there is a not inappreciable quantitative difference even
for U/t = 20.

Less predictably, this qualitative similarity persists down to weak coupling. However,
asU/t is decreased, the energy scale for low-frequency RPA excitations rapidly deviates
from that of the NN Heisenberg model withJ = 4t2/U . Figure 2 shows the effects of
gradually decreasingU/t down toU/t = 2. Initially, the spin-wave band is pushed to
higher energy, consistent with the strengthening of NN exchange couplings and reflecting
also the increasing importance of beyond-nearest-neighbour couplings as shown in a recent
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Figure 2. Density of theN lowest-frequency RPA excitationsNT (ω) for the pure Hubbard
model for increasing interaction strengths:U/t = 2 (a), 3 (b), 4 (c), 6 (d), 8 (e), 12 (f ), 20 (g).

paper [14]. BelowU/t ∼ 5, however, this band starts to migrate tolowerenergies, reflecting
an increasing repulsion with the approaching Stoner-like band.

Table 1. Spin-wave character of low-ω RPA excitations� for the non-disordered and disordered
Hubbard models. For1/t = 0, � = �(ωmax); �̄ is the average of�(ω) over the lowestN
excitations.

1/t = 0 1/t = 3.0 U/t = 12

U/t � U/t �̄ 1/t �̄

1.0 0.02 3.0 0.05 0.0 1.00
2.0 0.39 4.5 0.20 1.5 1.00
3.0 0.71 6.0 0.33 3.0 0.98
4.0 0.86 9.0 0.75 4.5 0.89
>5.0 1.00 12.0 0.98 6.0 0.88

To investigate quantitatively the spin-wave character of the excitations, we calculate
�(ωp) = 1/(U2|∂λ/∂ω|ωp) for ωp 6 ωmax. The lowest excitation is of course the Goldstone
mode corresponding to a global spin rotation, and is a pure spin wave for allU/t > 0:
�(ωp = 0) = 1. Since excitations at the upper edge of the spin-wave-like band are
naturally most strongly influenced by the encroaching Stoner-like band, it is found that
�(ωp) > �(ωmax) for all ωp < ωmax. The first column of table 1 thus shows the
(U/t)-dependence of�(ωmax). From this it is seen that forU/t & 3 the excitations
are predominantly spin waves—in fact forU/t & 5 they are in essence pure spin waves,
� = 1—commensurate with a significant gap between the spin-wave and Stoner-like bands.
For U/t . 2–3, this gap diminishes rapidly and there is a substantial loss of spin-wave
character for excitations withω ' ωmax. Nonetheless, as is evident from the above, the
low-energy transverse spin excitations of the Hubbard model remain predominantly spin
waves for all but the lowestU/t .
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4. The Anderson–Hubbard model

Before considering the effects of disorder on the RPA spectrum, we first briefly outline
relevant properties of the inhomogeneous UHF ground state, since it is particle–hole
excitations out of this state which form the basis for the RPA collective modes; a full
account of the mean-field phase diagram is given in reference [11].

4.1. Mean-field ground state

On the introduction of disorder, UHF solutions remain Ising-like, withS tot
z = 0. Three

distinct magnetic phases are found: disordered paramagnetic (P), antiferromagnetic (AF)
and spin-glass-like (SG) phases. Both metallic (M) and insulating (I) phases also occur,
with the dominant metal–insulator transition (MIT) M→ gapless I, driven by Anderson
localization of single-particle states at the Fermi energyEF = 1

2U . We now consider two
specific paths across the disorder–interaction phase plane, which will be employed in the
next section to illustrate the combined effects of1 and U on the RPA transverse spin
spectrum.

Figure 3. For U/t = 12 and1/t = 3, (A) disorder-averaged density of UHF single-particle
statesD(E) versusE/t (solid line), where the unperturbed (U = 0) bandwidth is 12t ; and the
IPR L′(E) for N = 512-site systems (dashed line); (B) the corresponding site-resolved local
moment distribution|µ(ε)| versus site energyε/t (solid line, left-hand scale), andH(ε;EF ) as
defined in the text (dashed line, right-hand scale).

First, consider fixingU/t = 12 and varying the disorder,1/t . As 1/t is increased
from zero, disorder leads to broadening and eventual overlap of the Hubbard bands in the
UHF single-particle spectrum, such thatEF lies within a pseudogap in the total DoSD(E).
Studies of the IPRL′(E) = ∑i |aiασ |4 for single-particle states of energyEασ = E, with
E ∼ EF [11], imply that the system passes directly from a gapped to gapless insulator in this
region of the(1/t, U/t) phase plane (at1/t ' 2.5). Figure 3(A) showsD(E) and the IPR
profile L′(E) averaged overN = 512-site disorder realizations for(1/t, U/t) = (3, 12).
A pronounced pseudogap is evident inD(E), in which EF lies. Correspondingly,L′(E)
shows a maximum atE = EF and minima for states in the centre of the Hubbard bands
whereD(E) is maximal. Using a threshold IPR appropriate to the chosen system size
[11] shows that Fermi level states are localized: the system is a gapless Mott–Anderson
insulator (and remains thus with increasing1/t at the chosenU/t = 12). Analysis of the
Fourier transform of the local momentSz(k) = N−1∑

i µie
ik·Ri shows however that the
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system remains antiferromagnetically ordered: although increasingly ‘dirtied’ by disorder,
|Sz(π)| ' |µ| (where the mean moment per site|µ| = N−1∑

i |µi |), with little weight
at otherk-vectors. Note however that while the phases of the moments remain locked
in AF alignment, the distribution of local momentmagnitudesover the sites is highly
disordered. This is evident from the site-resolved distribution of local moment magnitudes,
|µ(ε)| = N−1

ε

∑
i:εi=ε |µi |, with Nε the number of sites withεi = ε; as shown in figure 3(B),

again for(1/t, U/t) = (3, 12). Sites with energies|εi | . 1
2U , disposed randomly on the

lattice, carry strong atomic-like moments, while sites with lower or higher site energies
have |µi | ' 0, being respectively largely doubly occupied by electrons or empty. This
profile is found to vary little with disorder for fixedU/t = 12, aside from minor erosion
of local moment magnitudes: the primary effect of1/t is to determine, via the site-energy
distributiong(ε), the fraction of sites (aroundε = 0) which carry strong local moments.

Also shown in figure 3(B) is a measure of the distribution of quasiparticle states of
givenenergyE over the sites:H(ε;E), given by [11]

H(ε;E) = g(ε)D(ε;E)
D(E)

(4.1a)

where

D(ε;E) = 1
2N
−1
ε

∑
i:εi=ε

∑
α,σ

|aiασ |2δ(E − Eασ ) (4.1b)

is the partial density of states for sites of bare site energyε. H(ε;EF ) is thus the quantum
probability density that electrons in Fermi-level quasiparticle states will be found on sites of
bare site energyε. As discussed in reference [11], and exemplified in figure 3(B),H(ε;EF )
is peaked strongly at the boundaries of the local moment distribution|ε| ' 1

2U ; i.e. sites with
strong local moments participate but weakly in Fermi-level quasiparticle states, which are
in contrast dominated by sites with bare site energies close to the local moment boundaries.
Sites with strong local moments, aroundε = 0, are in turn found to contribute mainly to
quasiparticle states withE ' 0 andE ' U , i.e. around the maxima in the single-particle
spectrum.

The second path considered is fixing the disorder at1/t = 3, and decreasing the
scaled interaction strengthU/t from U/t = 12. Note that, since theU/t → ∞ limit of
the disordered Hubbard model for any1/t is the non-disorderedAF Heisenberg model,
decreasingU/t may be thought of as effectively increasing (by ‘switching on’) the role
of disorder. AsU/t is reduced, the fraction of sites at the local moment boundaries
∼g(± 1

2U )—which give the dominant contribution to Fermi-level states (figure 3(B))—
increases. The system is ultimately driven metallic at a criticalU/t ' 7.2 [11]. However,
magnetic ordering remains characterized by a strong peak inSz(k) atk = π until U/t ' 2.5,
whereupon a sharp [12] transition occurs to a spin-glass-like state, withSz(k) receiving
essentially uniform O(1/N) contributions from manyk-vectors; see reference [12]. In this
phase, although the mean local moment per site|µ| is typically small (∼0.05), relatively
strong local moments are in fact found on a small fraction of sites with|ε| . 1

2U for a
given disorder realization. As discussed in reference [11], this reflects the disorder-induced
production of statistically rare local environments in which atomic-like moments are not
significantly eroded by electron hopping processes.

4.2. Collective excitation spectrum of the Anderson–Hubbard model

We now turn to the effects of disorder on the transverse RPA excitation spectrum. The
principal questions that we seek to address are:
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(i) What is the effect of disorder on the density of transverse spin excitations? Does a
low-energy spin-wave-like band exist for finite disorder, and what is the character of the
associated excitations?

(ii) What is the effect of disorder on the localization characteristics of low-lying
collective excitations?

(iii) What is the distribution of transverse spin excitations of given energy over the
sites, and how does this relate to the inhomogeneous distribution of local moments in the
mean-field ground state?

With disorder present, there are no simplifying symmetries which allow very large
system sizes to be studied, as in the1 = 0 case. However, this lack of symmetry—
specifically, the absence of degeneracies in the UHF spectrum—enables reasonable statistics
to be gained by sampling many disorder realizations for system sizes much smaller than those
required for1 = 0. Numerical evaluation of the entire transverse excitation spectrum—
including the Stoner-like excitations—remains nonetheless a large problem: a full pole
search for a system ofN sites requires diagonalization of aN × N matrix in the vicinity
of 1

2N
2 poles, and is therefore O(N4) for each disorder realization, an ensemble of which

needs subsequently to be sampled. For calculations of the full transverse spin spectrum we
have thus chosenN = 64-site systems, which are found to be sufficient for reproduction
of its general features; while for more detailed study of the low-energy portionN = 216 is
employed.

Figure 4. The full transverse excitation spectrum for the Anderson–Hubbard model at RPA level
(solid line) forN = 64 averaged over many disorder realizations, compared to the corresponding
UHF Stoner spectrum (dashed) for fixed disorder1/t = 3 andU/t = 12 (a), 9 (b), 6 (c), 3 (d).

For fixed disorder1/t = 3 and various values of the interaction strengthU/t 6 12,
figure 4 shows the full RPA density of transverse spin excitations, together with the
corresponding UHF particle–hole excitation spectrum (the ‘pure Stoner’ spectrum). At
U/t = 12, where the mean-field ground state is a gapless AF insulator, a pronounced
spin-wave-like band is again evident in the RPA spectrum at lowω, as for the non-
disordered limit (although the pure Stoner spectrum now extends down toω = 0); the
remainder of the RPA spectrum closely resembles the Stoner spectrum. On decreasing
U/t , the pure Stoner spectrum shifts to lower energy, since the separation between the
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maxima in the corresponding single-particle spectrumD(E) decreases and the pseudogap
at EF is gradually eliminated. As a result, the spin-wave-like band is gradually shifted
to lower energy (‘softened’) by, and ultimately absorbed into, the Stoner-like band. By
U/t = 3, close to the AF–SG border, the pure Stoner and RPA spectra appear virtually
indistinguishable.

Figure 5. As figure 4, but with fixed interaction strengthU/t = 12 and1/t = 1 (a), 2 (b),
3 (c), 4.5 (d), 6 (e) and 7.5 (f ). Note the persistence of a spin-wave-like band for all disorder
strengths.

Figure 6. Uniform RPA static transverse susceptibilityχu for fixed U/t = 12 as a function of
disorder1/t .

On fixingU/t and increasing disorder, a somewhat different picture emerges. Figure 5
shows the RPA and pure Stoner spectra forU/t = 12 and various values of1/t . At
low disorder1/t = 1, for which the UHF ground state is an AF Mott–Hubbard (gapped)
insulator, a spin-wave-like band, well separated from the remainder of the excitations,
is clearly distinguishable. Closer inspection shows that this band is in fact shifted
to slightly higher frequency compared to the non-disordered case, despite the intuitive
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expectation that disorder should lead to a ‘softening’ of the spin waves. This upward
shift is correspondingly manifest in an initial decrease in the uniform static susceptibility
χu = N−1∑

ij χ
−+
ij (0) upon the introduction of disorder: as follows from the Lehmann

representation of the susceptibility equation (2.7), a decrease in density of low-frequency
excitations with significant weight in the on-site spin-flip subspace leads to a decrease in
χu. On increasing disorder further, the UHF single-particle gap closes and the pure Stoner
spectrum acquires weight down toω = 0; see figure 5. The maximum in the Stoner-
like band in the RPA spectrum—occurring atω ∼ U—changes little with disorder, but its
disorder-induced broadening increasingly repels the spin-wave-like band which is thus by
contrast shifted tolower frequency (see figure 5). This is the ‘softening’ of spin waves
with disorder, which in turn is reflected in an increase in the uniform static susceptibility
χu. Figure 6 shows the disorder-averagedχu versus1/t for U/t = 12 (and we add
that in the non-disordered limit, the resultantχu for the N = 64-site system reproduces
accurately theN → ∞ value, which can be obtained analytically). The above behaviour
is clearly demonstrated: after an initial slight decrease,χu progressively increases with
increasing disorder as the spin-wave-like band moves to lower frequencies. Note further
that increasing disorder for fixedU/t has a considerably less pronounced effect on the
spin-wave-like band than decreasingU/t for fixed disorder: decreasing interaction strength
shifts the maximum in the Stoner-like band to lower energy (figure 4), while increasing
1/t by contrast merely broadens the band, as shown in figure 5.

The effect of disorder on the position of the spin-wave-like band also provides a natural
explanation for the strongly site-differential enhancements of local susceptibilities with
disorder, as found in a recent RPA study of the present model [13]. Specifically, the
total uniform susceptibility is deconvoluted via

χu =
∫

dε g(ε)χ(ε) (4.2)

whereχ(ε) = N−1
ε

∑
i:εi=ε χi with χi =

∑
j χij (0). χ(ε) is thus the mean local suscepti-

bility for sites of given site energyε. In reference [13] (figure 2) it was found that an
increase in disorder leads to a strong enhancement ofχ(ε) for sites in the local-moment
range|ε| . 1

2U , while sites outside this range, whose susceptibilities have typical Pauli-like
values, are by contrast only weakly affected by disorder. A site-differential analysis of the
RPA excitations forming the spin-wave-like band, in analogy toH(ε;E) for single-particle
states (equation (4.1)), shows that these excitations have weight almost exclusively on the
strong local-moment-carrying sites, and receive little contribution from sites outside the
local moment range (consistent with their interpretation as ‘spin-wave’-like). As discussed
above, the principal effect of increasing disorder is ultimately to shift the spin-wave-like
band to low frequency, while the Stoner-like band is merely broadened. The disorder-
induced ‘softening’ of the spin-wave-like band therefore manifests itself almost exclusively
in χ(ε) for strong moment-carrying sites, as found in reference [13], and has little effect on
susceptibilities outside the local moment range, which are instead dominated by Stoner-like
excitations.

4.3. Character of the transverse excitations

From the preceding section, it is clear (figures 4 and 5) that a low-energy feature in
the density of RPA transverse spin excitations does indeed exist in the AF region of the
(1/t, U/t) phase plane. However, the preceding analysis by itself gives no information on
the spin-wave-likecharacterof the excitations which form this band, or with which sites
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they are associated. To probe the nature of these low-energy excitations, we have performed
pole searches usingN = 216 sites for many disorder realizations at a selection of points in
the (1/t, U/t) plane, focusing (as in the non-disordered limit) on the lowestN excitations,
with �(ωp) = 1/(U2|∂λ/∂ω|ω=ωp ) evaluated at each RPA pole. For illustration, the second
and third columns respectively of table 1 show�(ω) averaged over the lowestN RPA
excitations for: (a) fixed1/t = 3 and various interaction strengthsU/t ; and (b) fixed
U/t = 12 as a function of disorder.

Figure 7. A scatter diagram showing IPRL for low-frequency RPA excitations versusω/t for
fixed interaction strengthU/t = 12.0 and varying disorder,1/t = 1.5 (A), 3.0 (B), 4.5 (C),
6.0 (D).

For fixed U/t = 12, it is seen that while increasing disorder leads to a diminution
of spin-wave character, the effect is relatively weak and the low-energy transverse spin
excitations retain strong spin-wave character. This is consistent with the fact that the system
remains an AF insulator, and with the persistence (figure 5) of the pronounced low-energy
spin-wave-like band in the transverse spin spectrum. By contrast, reducingU/t at fixed
disorder leads to a more pronounced reduction in spin-wave character, consistent with the
progressive erosion of the spin-wave-like component in the RPA transverse spin spectrum
(figure 4) discussed above. Again, this is physically natural: with decreasing interaction
strength the system undergoes a (gapless) insulator→ metal transition atU/t ' 7.2 and
an increase in off-site character in the low-energy spin excitations is thus to be expected.
Note however that, even at lowU/t , the RPA excitations have substantially more spin-wave
character than pure Stoner excitations in the same frequency range, as may be verified by
considering the weight of the latter in the on-site spin-flip subspace, given by

�HF(ω
0
p) =

∑
iσ

∑
α>β

a2
iασ a

2
iβ−σ δ(ω

0
p − [Eασ − Eβ−σ ]). (4.3)

This is found to be an order of magnitude smaller than the corresponding�(ω) for low-
frequency RPA excitations.
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4.4. Localization characteristics of low-ω excitations

Loss of translational symmetry on the introduction of disorder is expected to lead to
localization of some or all collective excitations, in analogy to Anderson localization of
single-particle states. Consider the IPRL(ωp) of a collective transverse spin excitation of
energyωp, as defined in equation (2.13). To distinguish between localized and delocalized
excitations a threshold IPR appropriate to a given system size should be established, such
that excitations below (above) this value are deemed extended (localized). In principle, this
could be obtained by finite-size scaling, but in practice we are limited to system sizes of the
order ofN = 216. For single-particle states of the non-interacting Anderson model, finite-
size scaling yields a threshold IPRL′c ∼ 0.1 for N = 216 sites. We correspondingly adopt
a thresholdLc ∼ 0.1 for collective excitations of the Anderson–Hubbard model. This value
itself should not of course be taken very seriously; it simply serves as a useful qualitative
guide in the following discussion.

Figure 7 shows the IPRL(ω) of the lowest energy excitations forU/t = 12 and various
values of the disorder. For weak1/t = 1.5 (figure 7(A)), the majority of excitations are
delocalized, as expected, with a localized ‘tail’ at highω. Increasing disorder to1/t = 3
and 4.5 leads to the occurrence of further sparse, localized excitations at very lowω,
superimposed over a background of delocalized excitations (figures 7(B), 7(C)), and the
density of localized excitations rises on further increasing disorder (figure 7(D)).

Figure 8. Probability distribution of IPRsP(L) for
U/t = 12 and1/t = 1.5 (solid), 3.0 (dashed), 4.5
(chain) and 6.0 (dotted).

The above behaviour is clarified by considering the corresponding IPR probability
distributions, P(L) (figure 8). This shows a peak at lowL, corresponding to the
‘delocalized’ backbone, with a long tail to highL, reflecting the presence of localized
excitations. For low1/t = 1.5, the peak is sharp and centred well within our approximate
criterion for delocalized excitations. As1/t is increased, the distribution broadens and the
most probable value ofL shifts to higher values.

To understand the above behaviour, we site resolve excitations of given IPRL, in
analogy to the site distribution of quasiparticle states,H(ε;E) (equation (4.1)), via the
quantity

HRPA(ε;L) = g(ε)NRPA(ε;L)
NRPA(L)

(4.4)

(such that
∫

dε HRPA(ε;L) = 1). Here,NRPA(L) = N−1∑
ωp
δ(L − L(ωp)) is the density

of excitations of fixed IPRL, andNRPA(ε;L) is the partial density of such excitations on
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Figure 9. Probability distributionHRPA(ε;L) (equation (4.4)) of the lowestN RPA excitations
with IPR L over sites of energyε, averaged over excitations withL > 0.3 (solid line) and
L < 0.3 (dotted line) forU/t = 12 and1/t = 3.

sites of given site energyε, given by

NRPA(ε;L) = N−1
ε

∑
i:εi=ε

∑
ωp

|Viγ (ωp)|2δ(L− L(ωp)). (4.5)

HRPA(ε;L) then gives the overlap of excitations of given IPRL on sites of different site
energies. For(1/t, U/t) = (3, 12), figure 9 shows theε-dependence ofHRPA averaged
over all L < 0.1 andL > 0.3, to illustrate the site-differential character of extended and
localized excitations respectively. Localized excitations are seen to be dominated by sites
close to the local moment boundaries|ε| ∼ U/2, while sites in the range|ε| . U/2,
which carry large moments, make the dominant contribution to delocalized excitations. As
expected, sites outside the local moment regime, which possess very small moments, do
not contribute significantly to any of the low-energy excitations; rather, they participate in
Stoner-like excitations of significantly higher energy.

The origin of the localized and delocalized low-energy transverse spin excitations is then
readily rationalized. Sites with site energies in the range|ε| . U/2, which possess large
local moments, contribute most significantly to single-particle states within the Hubbard
sub-bands. Since these states are the most delocalized, collective excitations involving
them will likewise be delocalized. At UHF (‘pure Stoner’) level, transverse spin excitations
between single-particle states within the Hubbard bands incur an energy cost of orderU ; but
in the RPA spectrum, via inclusion of particle–hole correlations, this energy is renormalized
down to a spin-wave-like scale on the order of an exchange coupling. This is the origin of
the delocalized low-energy transverse spin excitations. By contrast, sites with|ε| ∼ U/2
close to the local moment boundaries participate dominantly in single-particle states close
to the Fermi level, or an energy∼U above or below it. ForU/t = 12 such states are
strongly localized, and hence so too are collective excitations involving them. Again, such
excitations are renormalized to a low-energy scale via the particle–hole interactions inherent
in the RPA. Both localized and delocalized transverse spin excitations thus arise at low
energies, reflecting the underlying localization characteristics of single-particle states over
a very wide energy range in the associated single-particle spectrum. Note further that these
arguments do not imply coexistence of localized and extended transverse spin excitations
at the same energy in the spin-wave-like band; and the apparent occurrence of such in
e.g. figure 7(D) is largely a consequence of sampling different disorder realizations. While
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the present, qualitative considerations do not of course permit identification of mobility
edges in the spin-wave-like band, it is at least plausible from figure 7 that such exist.

From the above, the system can thus be regarded as composed of two essential
components: an AF large-moment component which gives rise to the backbone of
delocalized excitations, and a set of sites carrying smaller moments which give rise to
localized excitations. As disorder is increased, the fraction of sites in the former category
decreases, leading to a shift in the peak inP(L) (figure 8) to higherL and a concomitant
broadening of the distribution. The probability of sites with|ε| ∼ U/2 correspondingly
increases, and hence localized excitations ultimately become the dominant theme.

The above discussion is confined to a region of the (1/t, U/t) phase diagram in which
the mean-field ground state is an AF insulator. What of the metallic AF and SG phases?
Fixing 1/t = 3 and decreasingU/t progressively fromU/t = 12 down toU/t = 6
leads (atU/t ' 7.2) to a transition from an AF insulator to an AF metal. However, the
IPR profile of the low-energy transverse spin excitations shows essentially no qualitative
change from that forU/t = 12: a backbone of delocalized excitations remains present,
with localized excitations superimposed at low and higherω/t . In the metallic region,
however, the localized excitations now arise principally from transfer of a spin between a
delocalizedUHF state near the Fermi level to alocalizedUHF state∼U above or below
EF . The localized state overlaps only a few sites, while the delocalized state has weight on
a finite fraction of sites. The excitation thus appears localized in the IPR profile since the
on-site spin-flip contribution (which is of course the component of the excitation probed;
see equation (2.14)) can occur only from sites overlapped by the localized state.

On decreasingU/t further toU/t ' 2.5, the mean-field ground state becomes a SG
metal. Here, the RPA and pure Stoner excitation spectra appear virtually identical (see
e.g. figure 4). It is indeed found that the majority of low-energy RPA excitations are little
more than weakly renormalized Stoner excitations, as expected from the low value of�̄ in
table 1. However, at very low energies (ω . 0.3t), this is not the case. As in the AF metal
regime, low-energy localized modes appear in the RPA spectrum, while the pure Stoner
spectrum at such low energies is composed of entirely delocalized modes (since the system
is metallic). These localized excitations are found to have dominant weight on those rare
sites in the spin glass that possess substantial local moments, flips of which would incur
an energy cost of∼U within UHF, but occur at significantly lower energies in the RPA
spectrum.

5. Discussion

In recent papers [14, 15], we have described an approximate mapping of the low-frequency
transverse spin excitations of the non-disordered Hubbard model at finiteU/t onto those
of an effective underlying Heisenberg model. The(U/t)-dependent effective exchange
couplings are not restricted to purely nearest-neighbour interactions; they follow solely
from a knowledge of the RPA excitations about the broken-symmetry UHF state at
zero temperature. The mapping becomes exact asU/t → ∞ and, conjoined with an
Onsager reaction field approach, enables extraction of thermodynamic properties in the
thermal paramagnetic phase. The resultant Néel temperatures, spin-correlation functions
and magnetic susceptibilities were [14, 15] found to be in good agreement with quantum
Monte Carlo calculations over a wide(U/t)-range from strong to weak coupling. We now
assess the extent to which the present findings support application of such a mapping to the
Anderson–Hubbard model.

As discussed in references [14, 15], the mapping is accurate provided that there is
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a persistent separation between low-energy spin-wave-like excitations and higher-energy
Stoner-like excitations; i.e. provided that in practice a discernible spin-wave-like band,
comprising excitations with an appreciable degree of on-site spin-flip character, is present
in the full RPA transverse spin spectrum. As shown in section 3, this does indeed hold for
the pure Hubbard model for allU/t & 2–3. For the Anderson–Hubbard model, figure 5
and table 1 show that this also holds for all disorder strengths studied, at relatively large
U/t = 12. Thus, the mapping should certainly be accurate well within the disordered AF
phase of the model. On fixing disorder and reducing interaction strength towards the AF–SG
boundary, the spin-wave character of the low-frequency band decreases significantly and
the band itself is ultimately absorbed by the Stoner-like portion, such that for1/t = 3 the
mapping would not be quantitatively accurate forU/t ' 4 and below. Not unexpectedly,
therefore, the mapping would not be applicable to the low-U/t SG phase; but we do
anticipate it to be accurate throughout the major part of the disordered AF phase in the
(1/t, U/t) plane, wherein the effect of disorder on, for example, the Néel temperature can
be investigated. This is the subject of a forthcoming paper [20].
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